

15CS64

USN

Sixth Semester B.E. Degree Examination, June/July 2019 **Operating Systems**

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- Explain the role of operating system from different viewpoints. Explain the dual mode of operation of an operating system. (07 Marks)
 - Demonstrate the concept of virtual machine with an example.

(05 Marks)

Explain the types of multiprocessing system and the types of clustering.

(04 Marks)

- Describe the implementation of interprocess communication using shared memory and 2 message passing. (06 Marks)
 - b. Demonstrate the operations of process creation and process termination in UNIX. (06 Marks)
 - Explain the different states of a process, with a neat diagram.

(04 Marks)

Module-2

Discuss the threading issues that come with multithreaded program.

(08 Marks)

Illustrate how Reader's-Writer's problem can be solved by using semaphores.

Calculate the average waiting time by drawing Gantt chart using FCFS (First Come First Serve), SRTF (Shortest Remaining Time First), RR (Round Robin) [q = 2 ms] algorithms.

Process	Arrival time	Burst time
P_1	0	9
P ₂	1	4
P ₃	2	9
P ₄	3	5

(08 Marks)

Explain the Dining-Philosopher's problem using monitors.

(08 Marks)

Module-3

a. Determine whether the following system is in safe state by using Banker's algorithm.

	Process Allocation			Maximum			Available			
		A	В	C	A	В	C	A	В	C
4	P ₀	0	1	0	7	5	3	3	3	2
	P_1	2	0	0	3	2	2			
	P_2	3	0	2	9	0	2			
	P_3	2	1	1	2	2	2			
	P ₄	0	0	0	4	3	3			

If a request for P₁ arrives for (1 0 2), can the request be granted immediately?

(09 Marks)

b. Discuss the various approaches used for deadlock recovery.

(07 Marks)

Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice. important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

OR

- 6 a. Illustrate with example, the internal and external fragmentation problem encountered in continuous memory allocation.

 (07 Marks)
 - b. Explain the structure of page table.

(09 Marks)

Module-4

7 a. Illustrate how demand paging affects systems performance. (08 Marks)
b. Describe the steps in handling a page fault. (08 Marks)

OR

8 a. Explain the various types of directory structures.
b. Describe various file allocation methods.
(08 Marks)

Module-5

- 9 a. Explain the access matrix model of implementing protection in operating system. (07 Marks)
 - b. Explain the following disk scheduling algorithm in brief with examples:
 - i) FCFS scheduling
 - ii) SSTF scheduling
 - iii) SCAN scheduling
 - iv) LOOK scheduling

(09 Marks)

OR

- 10 a. Explain the components of LINUX system with a neat diagram. (08 Marks)
 - b. Explain the way process is managed in LINUX platform.

(08 Marks)